Cor Vasa 2011, 53(10):522-526 | DOI: 10.33678/cor.2011.131

Prevalence of polymorphisms of CYP2C9 and VKORC1 in the Czech Republic and reflection on the views of anticoagulation therapy with warfarin

Jan Kvasnička1,*, Jaroslava Hájková1, Petra Bobčíková1, Tomáš Kvasnička1, Daniela Dušková2, Šárka Poletínová2, Veronika Kieferová2, Ladislav Pecen3
1 Trombotické centrum a Centrální hematologické laboratoře, Ústav klinické biochemie a laboratorní diagnostiky, Všeobecná fakultní nemocnice a 1. lékařská fakulta Univerzity Karlovy, Praha
2 Fakultní transfuzní oddělení, Všeobecná fakultní nemocnice a 1. lékařská fakulta Univerzity Karlovy, Praha
3 Ústav informatiky Akademie věd ČR, Praha, Česká republika

Introduction: Polymorphisms in the genes encoding the cytochrome P 450 2C9 enzyme and the vitamin K epoxide reductase, subunit 1 (VKORC1) are known to contribute to the sensitivity to warfarin.
Aim of the study: We wanted to determine the prevalence of CYP2C9 (allele *1, *2 and *3) and VKORC1 (-1639 G and A alleles), and their combinations in Czech population to get an idea of how many percent of individuals can theoretically involve increased sensitivity to warfarin.

Methods: Genotyping was performed in 1300 healthy subjects (774 men and 526 women) using a robotic DNA isolation and subsequent PCR amplification according to the manufacturer's instructions with melting curve analysis (Light Cycler 480 System, Roche).

Results: The combinations of VKORC1 -1639 A/A genotypes with CYP2C9 *1/*3, *2/*2, *2/*3 or *3/*3, and a rare combination of VKORC1 -1639 G/A with CYP2C9 *3/*3, which underlie very high sensitivity to warfarin, were determined in 1.6% of people. The combinations of VKORC1 -1639 A/A with CYP2C9 *1/*2, VKORC1 -1639 G/A with CYP2C9 *2/*3, and VKORC1 -1639 G/G with CYP2C9 *3/*3, which underlie high sensitivity to warfarin, were determined in 3.3% of people. The combinations of VKORC1 -1639 A/A with CYP2C9 *1/*1, and VKORC1 -1639 G/A with the CYP2C9 *1/*2, *1/*3, *2/*2 or VKORC1 -1639 G/G with CYP2/C *2/*3, which underlie medium-high sensitivity to warfarin, were determined in 26.2% of people.

Conclusion: About 30% of the Czech healthy subjects have genetically determined higher sensitivity to warfarin. New antithrombotics use is discussed as an alternative to warfarin.

Keywords: Warfarin; Prevalence of CYP2C9 mutations; Prevalence of VKORC1 mutation; Czech Republic; New antithrombotics

Published: October 1, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kvasnička J, Hájková J, Bobčíková P, Kvasnička T, Dušková D, Poletínová Š, et al.. Prevalence of polymorphisms of CYP2C9 and VKORC1 in the Czech Republic and reflection on the views of anticoagulation therapy with warfarin. Cor Vasa. 2011;53(10):522-526. doi: 10.33678/cor.2011.131.
Download citation

References

  1. Guerrouij M, Uppal CS, Alklabi A, Douketis JD. The clinical impact of bleeding during oral anticoagulant therapy: Assessment of morbidity, mortality and post-bleed anticoagulant management. J Thromb Thrombolysis 2011;31:419-423. Go to original source... Go to PubMed...
  2. Strandell J, Wahlin S. Pharmacodynamic and pharmacokinetic drug interactions reported to VigiBase, the WHO global individual case safety report database. Eur J Clin Pharmacol 2011;67:633-641. Go to original source... Go to PubMed...
  3. Samsa GP, Matchar DB, Goldstein LB, et al. Quality of anticoagulation management among patients with atrial fibrillation: results of a review of medical records from 2 communities. Arch Intern Med 2000;160:967-973. Go to original source... Go to PubMed...
  4. Go AS, Hylek EM, Borowsky LH, et al. Warfarin use among ambulatory patients with nonvalvular atrial fibrillation: the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. Ann Intern Med 1999;131:927-934. Go to original source... Go to PubMed...
  5. Gattellari M, Worthington J, Zwar N. Warfarin: an inconvenient truth [editorial]. Stroke 2009;40:5-7. Go to original source... Go to PubMed...
  6. Gladstone DJ, Bui E, Fang J, et al. Potentially preventable strokes in high-risk patients with atrial fibrillation who are not adequately anticoagulated. Stroke 2009;40:235-240. Go to original source... Go to PubMed...
  7. van Walraven C, Oake N, Wells PS, Foerster AJ. Burden of potentially avoidable anticoagulant-associated hemorrhagic and thrombembolic events in the elderly. Chest 2007;131:1508-1515. Go to original source... Go to PubMed...
  8. Flaherty ML, Kissela B, Woo D, et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology 2007;68:116-121. Go to original source... Go to PubMed...
  9. Shireman TI, Mahnken JD, Howard PA, et al. Development of a contemporary bleeding risk model for elderly warfarin recipients. Chest 2006;130: 1390-1396. Go to original source... Go to PubMed...
  10. Wysowski DK, Nourjah P, Swartz L. Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern Med 2007;167:1414-1419. Go to original source... Go to PubMed...
  11. Wallentin L, Yusuf S, Ezekowitz MD, et al, on behalf of the RE-LY investigators. Efficacy and safety od dabigatran compared with warfarin at different levels of international normalized ratio control for stroke prevention in atrial fibrillation: an analysis of the RE-LY trial. Lancet 2010;376:975-983. Go to original source... Go to PubMed...
  12. Lip GY, Frison L, Halperin JL, Lane DA. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. J Am Coll Cardiol 2011;57:173-180. Go to original source... Go to PubMed...
  13. Ansell J, Hirsh J, Hylek E, et al. Pharmacology and management of the vitamin K antagonists. Chest 2008;133(Suppl 6):160S-198S. Go to original source... Go to PubMed...
  14. Cooper GM, Johnson JA, Langaee TY, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 2008;112:1022-1027. Go to original source... Go to PubMed...
  15. Wang D, Chen H, Momary KM, et al. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 2008;112:1013-1021. Go to original source... Go to PubMed...
  16. Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in Warfarin-treated patients: A HuGEnet™ systemic review and meta-analysis. Genet Med 2005;7:97-104. Go to original source... Go to PubMed...
  17. Schwarz UI, Stein CM. Genetic determinants of dose and clinical outcomes in patients receiving oral anticoagulants. Clin Pharmacol Ther 2006;80:7-12. Go to original source... Go to PubMed...
  18. Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005;106:2329-2333. Go to original source... Go to PubMed...
  19. Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics 2010;11:493-496. Go to original source... Go to PubMed...
  20. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/009218s108lbl.pdf
  21. Moyer TP, O'Kane DJ, Baudhuin LM, et al. Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc 2009;84:1079-1094. Go to original source... Go to PubMed...
  22. Epstein RS, Moyer TP, Auibert RE, et al. Warfarin genotyping reduces hospitalization tates.Results from the MM-WES (Medco-Mayo Warfarin Effectiveness Study). J Am Coll Cardiol 2010;55:2804-2812. Go to original source... Go to PubMed...
  23. Schwarz UI, Ritchie MD, Bradford Y, et al. Genetic determinants of response to warfarin during intial anticoagulation. N Engl J Med 2008;358:999-1008. Go to original source... Go to PubMed...
  24. Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005;352:2285-2293. Go to original source... Go to PubMed...
  25. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med 2011;364:1144-1153. Go to original source... Go to PubMed...
  26. Zhu Y, Shennan M, Reynolds KK, et al. Estimation of warfarin maintenance dose based on VKORC1(-1639 G > A) and CYP 2C9 genotypes. Clin Chem 2007;53:1199-1205. Go to original source... Go to PubMed...
  27. Yuan HY, Chen JJ, Lee MT, et al. A novel functional VKORC1 promoter polymorphysm is associated with inter-individual and inter-etnic differences in warfarin sensitivity.Hum Mol Genet 2005;14:1745-1751. Go to original source... Go to PubMed...
  28. Schelleman H, Chen Z, Kealy C, et al. Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther 2007;81:742-747. Go to original source... Go to PubMed...
  29. Limdi NA, Wadelius M, Cavallari L, et al.; International Warfarin Pharmacogenetics Consortium. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 2010;115:3827-3834. Go to original source... Go to PubMed...
  30. Epstein RS, Moyer TP, Aubert RE, et al. Identification of major CYP2C9 and CYP2C19 polymorphisms by Fluorescence Resonance Energy Transfer Analysis. Clin Chem 2002;48:1592-1594. Go to original source...
  31. Puehringer H, Loreth RM, Klose G, et al. VKORC1 - 1639G>A and CYP2C9*3 are the major genetic predictors of phenprocoumon dose requirement. Eur J Clin Pharm 2010;66:591-598. Go to original source... Go to PubMed...
  32. http://www.WarfarinDosing.org
  33. Rosove MH, Grody WW. Should we be applying warfarin phargmagogenetics to clinical practice? No, not now. Ann Intern Med 2009;151:270-273. Go to original source... Go to PubMed...
  34. Takeuchi F, McGinnis R, Bourgeois S, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. Plos Genetics 2009;5:e1000433. Go to original source... Go to PubMed...
  35. Ahrens I, Lip GY, Peter K. What do the RE-LY, AVERROES and ROCKET-AF trial tell us for stroke prevention in atrial fibrillation? Thromb Haemost 2011;105:574-578. Go to original source... Go to PubMed...
  36. Sorensen SV, Kansal AR, Connolly S,Peng S, Linnehan J, Bradley-Konnedy C. Cost-effectiveness of dabigatran etexilate for the prevention of stroke and systemic embolism in atrial fibrillation: A Canadian payer perspective. Thromb Haemost 2011;105:908-919. Go to original source... Go to PubMed...
  37. Shimoli VS, Cage BF. Cost - effectiveness of dabigatran for stroke prophylaxis in atrial fibrillation. Circulation 2011;123:2562-2570. Go to original source... Go to PubMed...
  38. Špinar J, Vítovec J. Studie Rocket AF - konec warfarinu na obzoru? Kardiol Rev 2011;13:106-108.




Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.