Cor Vasa 2007, 49(7-8):259-269 | DOI: 10.33678/cor.2007.097

Genetics in cardiology. Part III. Monogenic inheritance syndromes and cardiac disease

Ilga Grochová1, Ladislav Groch2
1 Genprogress s. r. o. Brno, Centrum prenatální diagnostiky s. r. o
2 I. interní-kardioangiologická klinika, Fakultní nemocnice u sv. Anny, Brno, Česká republika

This part of our series addresses monogenic (Mendelian) inheritance disease. The following most frequent monogenic inheritance disease with cardiac symptomatology are discussed: Di George syndrome, Noonan syndrome, Holt-Oram syndrome, Marfan syndrome (including detailed diagnostic criteria), hypertrophic cardiomyopathy, dilating cardiomyopathy, non-compact cardiomyopathy, Fabry s disease, arrhythmogenic right ventricular dysplasia (including the diagnostic criteria), long-QT syndrome and Brugada syndrome. The type of inheritance, the risk for disease transmission to the offspring, and the potential of molecular genetic diagnosis are given with each syndrome.

Keywords: Monogenic disease; Inheritance syndromes; DNA diagnosis

Published: July 1, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Grochová I, Groch L. Genetics in cardiology. Part III. Monogenic inheritance syndromes and cardiac disease. Cor Vasa. 2007;49(7-8):259-269. doi: 10.33678/cor.2007.097.
Download citation

References

  1. Baker KD, Skuse DH. Adolescents and young adults with 22q11 syndrome: psychopathology in an at-risk group. Br J Psychiatry 2005;186:115-20. Go to original source... Go to PubMed...
  2. Desmaze C, Scambler P, Prieur M, et al. Routine diagnosis of DiGeorge syndrome by fluorescent in situ hybridization. Hum Genet 1993;90:663-5. Go to original source... Go to PubMed...
  3. Fernandez L, Lapunzina P, Arjona D, et al. Comparative study of three diagnostic approaches (FISH, STRs and MLPA) in 30 patients with 22q11.2 syndrome. Clin Genet 2005;68:373-8. Go to original source... Go to PubMed...
  4. Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001;104:619-29. Go to original source... Go to PubMed...
  5. Sarkozy A, Obregon MG, Conti E, et al. A novel PTPN11 bridges Noonan syndrome, multiple lentigines/LEOPARD syndrome and Noonan-like/multiple giant cell lesion syndrome. Eur J Hum Genet 2004;12:1069-72. Go to original source... Go to PubMed...
  6. Schubbert S, Zenker M, Rowe SL, et al. KRAS cause Noonan syndrome. Nat Genet 2006;38:331-6. Go to original source... Go to PubMed...
  7. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002;70:1555-63. Go to original source... Go to PubMed...
  8. Niihori T, Aoki Y, Ohashi H, et al. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet 2005;50:192-202. Go to original source... Go to PubMed...
  9. Tartaglia M, Cordeddu V, Chang H, et al. Paternal origin and sex-ratio distortion in transmission of PTPN11 in Noonan syndrome. Am J Hum Genet 2004;75:492-7. Go to original source... Go to PubMed...
  10. Borozdin W, Bravo Ferrer Acosta AM, Bamshad MJ, et al. Expanding the spectrum of TBX5 in Holt-Oram syndrome: detection of two intragenic detections by quantitative real time PCR, and report of eight novel point matations. Hum Mutat 2006;27:975-6. Go to original source... Go to PubMed...
  11. Brassington AM, Sung SS, Toydemir RM, et al. Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet 2003;73:74-85. Go to original source... Go to PubMed...
  12. Hatcher CJ, Kim MS, Mah CS, et al. TBX5 regulates cell proliferation during cardiogenesis. Dev Biol 2001;230: 177-88. Go to original source... Go to PubMed...
  13. He J, McDermott DA, Song Y, et al. Preimplantation genetic diagnosis of human heart malformation and Holt-Oram syndrome. Am J Med Genet 2004;126A:93-8. Go to original source... Go to PubMed...
  14. Heinritz W, Moschik A, Kujat A, et al. Identification of in the TBX5 in patients with Holt-Oram syndrome. Heart 2005;91:383-4. Go to original source... Go to PubMed...
  15. McDermott DA, Bressan MC, He J, et al. TBX5 genetic testing validates strict clinical criteria for Holt-Oram syndrome. Pediatr Res 2005;58:981-6. Go to original source... Go to PubMed...
  16. Sarkozy A, Conti E, Sedila D, el al. Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes. J Med Genet 2003;40:704-8. Go to original source... Go to PubMed...
  17. Digilio MC, Marino B, Capolino R, et al. Clinical manifestations of Deletion 22q11.2 syndrome (DiGeorge/Velo-Cardio-Facial syndrome). Images Paediatr Cardiol 2005;23:23-34.
  18. Digilio MC, Marino B. Clinical manifestations of Noonan syndrome. Images Paediatr Cardiol 2001;7:19-30.
  19. Fleck T, Czerny M, Wolner E, et al. Interventional treatment methods in patients with Marfan Syndrome. Images Paediatr Cardiol 2004;19:1-11.
  20. Turrini P, Basso C, Daliento L, et al. Is arrhythmogenic right ventricular cardiomyopathy a paediatric problem too? Images Paediatr Cardiol 2001;6:18-37.
  21. Jawad AF, McDonald-McGinn DM, Zackai E, Sullivan KE. Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velo-cardio-facial syndrome). J Pediat 2001;139:715-23. Go to original source... Go to PubMed...
  22. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nature Genet 2001;27:286-91. Go to original source... Go to PubMed...
  23. Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001;104:619-29. Go to original source... Go to PubMed...
  24. Paylor R, Glaser B, Mupo A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Nat Acad Sci 2006;103:7729-34. Go to original source... Go to PubMed...
  25. Shashi V, Keshaven MS, Howard TD, et al. Cognitive correlates of a functional COMT polymorphism in children with 22q11.2 deletion syndrome. Clin Genet 2006;69:234-8. Go to original source... Go to PubMed...
  26. Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003;362:1366-73. Go to original source... Go to PubMed...
  27. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genet 2003;34:148-50. Go to original source... Go to PubMed...
  28. Schollen E, Matthijs G, Gewillig M, Fryns J-P, Legius E. PTPN11 mutation in a large family with Noonan syndrome and dizygous twinning. Eur J Hum Genet 2003;11:85-8. Go to original source... Go to PubMed...
  29. Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome. Nature Genet 2006;38:331-6. Go to original source... Go to PubMed...
  30. Jongmans M, Sistermans EA, Rikken A, et al. Genotypic and phenotypic characterization of Noonan syndrome: new data and review of the literature. Am J Med Genet 2005;134A: 165-70. Go to original source... Go to PubMed...
  31. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem 2006;281:6785-92. Go to original source... Go to PubMed...
  32. Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nature Genet 2007;39:70-4. Go to original source... Go to PubMed...
  33. Tartaglia M, Martinelli S, Stella L, et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 2006;78:279-90. Go to original source... Go to PubMed...
  34. Kalidas K, Shaw AC, Crosby AH, et al. Genetic heterogeneity in LEOPARD syndrome: two families with no mutations in PTPN11. J Hum Genet 2005;50:21-5. Go to original source... Go to PubMed...
  35. De Paepe A, Devereux RB, Dietz HC, Hennekam RCM, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996;62:417-26. Go to original source... Go to PubMed...
  36. Hutchinson S, Furger A, Halliday D, et al. Allelic variation in normal human FBN1 expression in a family with Marfan syndrome: a potential modifier of phenotype? Hum Molec Genet 2003;12:2269-76. Go to original source... Go to PubMed...
  37. Erdmann J, Daehmlow S, Wischke S, et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet 2003;64:339-49. Go to original source... Go to PubMed...
  38. Maron BJ. Sudden death in young athletes. New Engl J Med 2003;349:1064-75. Go to original source... Go to PubMed...
  39. Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. New Engl J Med 2000;342:1778-85. Go to original source... Go to PubMed...
  40. Bos JM, Ommen SR, Ackerman MJ. Genetics of hypertrophic cardiomyopathy: one, two, or more diseases? Curr Opin Cardiol 2007;22:193-9. Go to original source... Go to PubMed...
  41. Ackerman MJ. Genetic testing for risk stratification in hypertrophic cardiomyopathy and long QT syndrome: fact or fiction? Curr Opin Cardiol 2005;20:175-81. Go to original source... Go to PubMed...
  42. Tester DJ, Will Ml, Ackerman MJ. Mutation detection in congenital long QT syndrome: cardiac channel gene screen using PCR, dHPLC, and direct DNA sequencing. Methods Mol Med 2006;128:181-207. Go to original source... Go to PubMed...
  43. Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 2005;294:2975-80. Go to original source... Go to PubMed...
  44. Choi G, Kopplin LJ, Tester DJ, Will ML, Haglund CM, Ackerman MJ. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation 2004;110:2119-24. Go to original source... Go to PubMed...
  45. Tester DJ, Kopplin LJ, Will ML, Ackerman MJ. Spectrum and prevalence of cardiac ryanodine receptor (RyR2) mutations in a cohort of unrelated patients referred explicitly for long QT syndrome genetic testing. Heart Rhythm 2005;10:1099-105. Go to original source... Go to PubMed...
  46. Beffagna G, Occhi G, Nava A, et al. Regulatory mutations in transforming growth factor-beta-3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 2005;65:366-73. Go to original source... Go to PubMed...
  47. Rampazzo A, Beffagna G, Nava A, et al. Arrhythmogenic right ventricular cardiomyopathy type 1 (ARVD1): confirmation of locus assignment and mutation screening of four candidate genes. Eur J Hum Genet 2003;11:69-76. Go to original source... Go to PubMed...
  48. Structural and functional assessment of arrhythmogenic right ventricular dysplasia/cardiomyopathy by multi-slice computed tomography: comparison with cardiovascular magnetic resonance. Int J Cardiol 2007; 115:e118-21.
  49. Rampazzo A, Nava A, Malacrida S, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2002;71:1200-6. Go to original source... Go to PubMed...
  50. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 2006;79:978-84.




Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.