Cor Vasa 2008, 50(12):460-463 | DOI: 10.33678/cor.2008.169
The role of microRNAs in cardiovascular disease
- III. interní-kardiologická klinika, Kardiocentrum, Fakultní nemocnice Královské Vinohrady a 3. lékařská fakulta Univerzity Karlovy, Praha, Česká republika
Recent experimental work has highlighted the enormous importance of what is referred to as microRNAs in the post-transcriptional regulation of gene expression. MicroRNAs are single-stranded RNA molecules of about 22 nucleotides in length belonging to the family of non-coding RNA. MicroRNAs induce a decrease in "messenger" RNA thereby inhibiting protein synthesis at translation level. The only specific type of microRNAs regulates the expression of a whole chain of genes encoding functionally or structurally related proteins. Experimental work has identified microRNAs as key regulators of genes affecting the growth and hypertrophy of cardiomyocytes, their contractile function, and electrical conductivity. This review article summarizes current concepts regarding the relevance of microRNAs in heart development and pathogenesis of cardiovascular disease.
Keywords: MicroRNA; Cardiovascular disease; Myocardial hypertrophy; Myocardial infarction; Arrhythmias
Published: December 1, 2008 Show citation
References
- Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409: 860-921.
Go to original source...
Go to PubMed...
- Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007;447:799-816.
Go to original source...
Go to PubMed...
- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120: 15-20.
Go to original source...
Go to PubMed...
- Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006;126: 1203-17.
Go to original source...
Go to PubMed...
- Blakaj A, Lin H. Piecing together the mosaic of early mammalian development through microRNAs. J Biol Chem 2008;283:9505-8.
Go to original source...
Go to PubMed...
- Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9.
Go to original source...
Go to PubMed...
- Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007;116:258-67.
Go to original source...
Go to PubMed...
- Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 2007;42:1137-41.
Go to original source...
Go to PubMed...
- Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007;100:416-24.
Go to original source...
Go to PubMed...
- Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007;13:613-8.
Go to original source...
Go to PubMed...
- Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 2007;170:1831-40.
Go to original source...
Go to PubMed...
- van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006;103:18255-60.
Go to original source...
Go to PubMed...
- van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007;316: 575-9.
Go to original source...
Go to PubMed...
- Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease. Physiol Genomics 2007;31: 367-73.
Go to original source...
Go to PubMed...
- Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007;13: 486-91.
Go to original source...
Go to PubMed...
- Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007;100:1579-88.
Go to original source...
Go to PubMed...
- Fazi F, Nervi C. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res 2008;79:553-61.
Go to original source...
Go to PubMed...
- Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008;105: 2111-6.
Go to original source...
Go to PubMed...
- Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 2008;79:562-70.
Go to original source...
Go to PubMed...
- Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002;12:735-9.
Go to original source...
- Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 2008;79:581-8.
Go to original source...
Go to PubMed...
- Scherr M, Venturini L, Battmer K, et al. Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res 2007;35:e149.
Go to original source...
Go to PubMed...
- Yang B, Lu Y, Wang Z. Control of cardiac excitability by microRNAs. Cardiovasc Res 2008;79:571-80.
Go to original source...
Go to PubMed...