Cor Vasa 2006, 48(6):234-241 | DOI: 10.33678/cor.2006.069

Cellular therapy of coronary heart disease: a review of concepts, limitations, prospects. Part Two. Stem cells, prospects of cullular therapy

Martin Pěnička1, Petr Widimský1, Tomasz Siminiak2, Otto Lang3, Karol Čurila1, Kateřina Hesová1
1 III. interní-kardiologická klinika, Kardiocentrum
3 Klinika nukleární medicíny, Fakultní nemocnice Královské Vinohrady a 3. lékařská fakulta Univerzity Karlovy, Praha, Česká republika
2 Kardiologická klinika, Lékařská fakulta, Krajská nemocnice, Poznaň, Polsko

This review examines the current concepts of cellular therapy of ischemic heart disease and the potential of myocardial regeneration. Part One provided background information and discussed techniques of cell myocardial implantation and skeletal myoblasts. Part Two examines the issue of stem cells and prospects of cellular therapy.

Keywords: Myocardial regeneration; Stem cells; Myoblasts; Coronary heart disease

Published: June 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pěnička M, Widimský P, Siminiak T, Lang O, Čurila K, Hesová K. Cellular therapy of coronary heart disease: a review of concepts, limitations, prospects. Part Two. Stem cells, prospects of cullular therapy. Cor Vasa. 2006;48(6):234-241. doi: 10.33678/cor.2006.069.
Download citation

References

  1. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763-76. Go to original source... Go to PubMed...
  2. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701-5. Go to original source... Go to PubMed...
  3. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004;116:769-78. Go to original source... Go to PubMed...
  4. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430-6. Go to original source... Go to PubMed...
  5. Tomita S, Li R-K, Weisel RD, Micjke DAG, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100 (Suppl):II247-II256. Go to original source... Go to PubMed...
  6. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123:1132-40. Go to original source... Go to PubMed...
  7. Badorff CC, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024-32. Go to original source... Go to PubMed...
  8. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-402. Go to original source... Go to PubMed...
  9. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697-705. Go to original source... Go to PubMed...
  10. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 2002;73:1919-25. Go to original source... Go to PubMed...
  11. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150-6. Go to original source... Go to PubMed...
  12. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-8. Go to original source... Go to PubMed...
  13. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation 2003;107:1247-9. Go to original source... Go to PubMed...
  14. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New Engl J Med 2003;348:593-600. Go to original source... Go to PubMed...
  15. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001;89:E1-7. Go to original source... Go to PubMed...
  16. Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003;92:1049-55. Go to original source... Go to PubMed...
  17. Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004;109:220-6. Go to original source... Go to PubMed...
  18. Kucia M, Dawn B, Hunt G, et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004;95:1191-9. Go to original source... Go to PubMed...
  19. Wojakowski W, Tendera M, Michalowska A, et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004;110:3213-20. Go to original source... Go to PubMed...
  20. Hamano K, Li TS, Kobayashi T, et al. Therapeutic angiogenesis induced by local autologous bone marrow cell implantation. Ann Thorac Surg 2002;73:1210-5. Go to original source... Go to PubMed...
  21. Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003;107:461-8. Go to original source... Go to PubMed...
  22. Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001;104:1046-52. Go to original source... Go to PubMed...
  23. Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, body distribution. Circulation 2003;108:863-8. Go to original source... Go to PubMed...
  24. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003;107:2134-9. Go to original source... Go to PubMed...
  25. Hou D, Youssef EA, Brinton TJ, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: Implications for current clinical trials. Circulation 2005;112 (Suppl I):I-150-I-156. Go to original source...
  26. Murry CE, Soonpaa MH, Reinecke H, et al. Haemotopoietic stem cells do not transdifferentiate into cardiac myocytes in ischaemic myocardium. Nature 2004;428:664-8. Go to original source... Go to PubMed...
  27. Balsam LB, Wagers AJ, Christensen JL, et al. Haemotopoietic stem cells adopt mature haemotopoietic fates in ischemic myocardium. Nature 2004;428:668-73. Go to original source... Go to PubMed...
  28. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived haemotopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004;10:494-501. Go to original source... Go to PubMed...
  29. Fuchs S, Baffour R, Zhou YF, et al. Delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726-32. Go to original source... Go to PubMed...
  30. Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived fro monocytes/macrophages and secrete angiogenic growth factors. Circulation 2003;107:1164-9. Go to original source... Go to PubMed...
  31. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913-8. Go to original source... Go to PubMed...
  32. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002;106:3009-17. Go to original source... Go to PubMed...
  33. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet 2004;364:141-8. Go to original source... Go to PubMed...
  34. Drexler H. Přehledná přednáška na workshopu o kmenových buňkách, Valladolid, Španělsko 2005; a na výročním kongresu Evropské kardiologické společnosti, Stockholm, Švédsko 2005.
  35. Janssens S. Přednáška na schůzce pracovní skupiny pro kmenové buňky Belgického červeného kříže. Gent, Belgie 2004; a na workshopu o kmenových buňkách, Valladolid, Španělsko 2005.
  36. Schachinger V, on behalf of REPAIR AMI investigators. Přednáška v sekci Late breaking clinical trials, AHA annual scientific sessions, Dallas, USA 2005.
  37. Lunde K, on behalf of ASTAMI investigators. Přednáška v sekci Late breaking clinical trials, AHA annual scientific sessions, Dallas, USA 2005.
  38. Penicka M, Lang O, Widimsky P, et al. Early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in human. Eur Heart J 2005;26 (Suppl):1458[Abstract]. Go to original source... Go to PubMed...
  39. Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45-6. Go to original source... Go to PubMed...
  40. Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ 2001;65:845-7. Go to original source... Go to PubMed...
  41. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart disease. Circulation 2003;107:2294-302. Go to original source... Go to PubMed...
  42. Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003;361:47-9. Go to original source... Go to PubMed...
  43. Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005;46:1651-8. Go to original source... Go to PubMed...
  44. Assmus B, Honold J, Fischer-Rasokat U, et al. Intracoronary Cell Transplantation in Patients with Chronic Myocardial Infarction: A Randomized Intrapatient Comparison of Bone Marrow-versus Blood-Derived Progenitor Cells (TOPCARE-Crossover Trial). AHA annual scientific sessions, Dallas, USA 2005, poster: 2755.
  45. Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surgery 2000;120:999-1005. Go to original source... Go to PubMed...
  46. Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 2004;109:3154-7. Go to original source... Go to PubMed...
  47. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O'Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000;343:915-22. Go to original source... Go to PubMed...
  48. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation 2002;106:804-8. Go to original source... Go to PubMed...
  49. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005;112 (9 Suppl):I178-I183. Go to original source... Go to PubMed...
  50. Menasche P. Cellular transplantation: hurdles remaining before widespread clinical use. Curr Opin Cardiol 2004;19:154-61. Go to original source... Go to PubMed...
  51. Suzuki K, Brand NJ, Allen S, et al. Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 2001;122:759-66. Go to original source... Go to PubMed...
  52. Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001;104:218-22. Go to original source... Go to PubMed...
  53. Bartunek J, Croissant JD, Kaluzhny Y, et al. Biological ex vivo specified adult bone marrow-derived mesenchymal stem cells for cardiac repair in a chronic dog model of myocardial infarction. Submitted.
  54. Nugent HM, Edelman ER. Tissue Engineering Therapy for Cardiovascular Disease. Circ Res 2003;92:1068-78. Go to original source... Go to PubMed...




Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.