Cor Vasa 2013, 55(4):e345-e354 | DOI: 10.1016/j.crvasa.2013.04.003

New biomarkers and heart failure

Dagmar Vondráková, Filip Málek, Petr Ošťádal, Andreas Krüger, Petr Neužil
Kardiologické oddělení, Kardiocentrum, Nemocnice Na Homolce, Praha, Česká republika

Heart failure is a major health problem with an increasing incidence and prevalence of the disease. The role of both established natriuretic peptides: B-type natriuretic peptide (BNP) and N-terminal prohormone pro-brain natriuretic peptide (NT-proBNP) in acute and chronic heart failure (HF) has been intensively studied. Its testing is routine in clinical practice for diagnosis and prognosis in HF. However, increased clarification and understanding of the interplay in the pathophysiology of HF revealed several new potential cardiac biomarkers. These novel biomarkers soluble ST2, galectin, copeptin and mid-regional fragment of pro-adrenomedullin (MR-proADM) may aid in the diagnostic and prognostic evaluation of acute and chronic heart failure.

Keywords: Copeptin; Galectin; Heart failure; Mid-regional fragment of pro-adrenomedullin; Novel cardiac biomarker; ST2

Received: January 19, 2013; Revised: March 30, 2013; Accepted: April 4, 2013; Published: August 1, 2013  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vondráková D, Málek F, Ošťádal P, Krüger A, Neužil P. New biomarkers and heart failure. Cor Vasa. 2013;55(4):e345-354. doi: 10.1016/j.crvasa.2013.04.003.
Download citation

References

  1. P.A. McKee, W.P. Castelli, P.M. McNamara, et al., The natural history of congestive heart failure: the Framingham study, The New England Journal of Medicine 285 (1971) 1441-1446. Go to original source... Go to PubMed...
  2. H. Eriksson, Heart failure: a growing public health problem, Journal of Internal Medicine 237 (1995) 135-141. Go to original source...
  3. D. Lloyd-Jones, R.J. Adams, T.M. Brown, et al., Heart disease and stroke statistics - 2010 update: a report from the American Heart Association, Circulation 121 (2010) e46-e215. Go to PubMed...
  4. R. S. Vasan, Basic science for clinicians biomarkers of cardiovascular disease molecular basis and practical considerations, Circulation 113 (2006) 2335-2362. Go to original source... Go to PubMed...
  5. J.J. McMurray, S. Adamopoulos, S.D. Anker, et al., ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012, European Heart Journal 33 (2012) 1787-1847. Go to original source... Go to PubMed...
  6. M. Emdin, C. Passino, S. Del Ry, et al., Influence of gender on circulating cardiac natriuretic hormones in patients with heart failure, Clinical Chemistry and Laboratory Medicine 41 (2003) 686-692. Go to original source... Go to PubMed...
  7. A. Clerico, S. Del Ry, S. Maffei, et al., The circulating levels of cardiac natriuretic hormones in healthy adults: effects of age and sex, Clinical Chemistry and Laboratory Medicine 40 (2002) 371-377. Go to original source... Go to PubMed...
  8. I. Loke, B. Squire, J.E. Davies, et al., Reference ranges for natriuretic peptides for diagnostic use are dependent on age, gender and heart rate, European Journal of Heart Failure 5 (2003) 599-606. Go to original source...
  9. S. Anwaruddin, D.M. Lloyd-Jones, A. Baggish, et al., Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study, Journal of the American College of Cardiology 47 (2006) 91-97. Go to original source... Go to PubMed...
  10. J. Hogenhuis, A.A. Voors, T. Jaarsma, et al., Anaemia and renal dysfunction are independently associated with BNP and NT-proBNP levels in patients with heart failure, European Journal of Heart Failure 9 (2007) 787-794. Go to original source... Go to PubMed...
  11. T.J. Wang, M.G. Larson, D. Levy, et al., Impact of obesity on plasma natriuretic peptide levels, Circulation 109 (2004) 594-600. Go to original source... Go to PubMed...
  12. M. Schultz, J. Faber, C. Kistorp, et al., N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) in different thyroid function states, Clinical Endocrinology 60 (2004) 54-59. Go to original source...
  13. G. Torre-Amione, Immune activation in chronic heart failure, American Journal of Cardiology 95 (2005) 3-8. Go to original source... Go to PubMed...
  14. E. Braunwald, Biomarkers in heart failure, The New England Journal of Medicine 358 (2008) 2148-2159. Go to original source... Go to PubMed...
  15. P. Fischer, D. Hilfiker-Kleiner, Survival pathways in hypertrophy and heart failure: the gp130-STAT axis, Basic Research in Cardiology 102 (2007) 393-411. Go to original source... Go to PubMed...
  16. M. Matsumoto, T. Tsujino, M. Lee-Kawabata, Serum interleukin-6 and C-reactive protein are markedly elevated in acute decompensated heart failure patients with left ventricular systolic dysfunction, Cytokine 49 (2010) 264-268. Go to original source... Go to PubMed...
  17. P. Fischer, D. Hilfiker-Kleiner, Role of gp130-mediated signalling pathways in the heart and its impact on potential therapeutic aspects, British Journal of Pharmacology 153 (2008) 414-427. Go to original source... Go to PubMed...
  18. A.S. Gabriel, A. Martinsson, B. Wretlind, et al., IL-6 levels in acute and post myocardial infarction: their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure, European Journal of Internal Medicine 15 (2004) 523-528. Go to original source... Go to PubMed...
  19. B. Hudzik, J. Szkodzinski, W. Romanowski, et al., Serum interleukin-6 concentration reflects the extent of asymptomatic left ventricular dysfunction and predicts progression to heart failure in patients with stable coronary artery disease, Cytokine 54 (2011) 266-271. Go to original source... Go to PubMed...
  20. T. Hamid, Y. Gu, R.V. Ortines, et al., Divergent tumor necrosis factor receptor-related remodelling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation, Circulation 119 (2009) 1386-1397. Go to original source... Go to PubMed...
  21. M. Petretta, G.L. Condorelli, L. Spinelli, et al., Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure, American Heart Journal 140 (2000) E28. Go to original source... Go to PubMed...
  22. M. Rivera, R. Taléns-Visconti, R. Sirera, et al., Soluble TNF-alpha and interleukin-6 receptors in the urine of heart failure patients. Their clinical value and relationship with plasma levels, European Journal of Heart Failure 6 (2004) 877-882. Go to original source... Go to PubMed...
  23. A. Deswal, N.J. Petersen, A.M. Feldman, et al., Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST), Circulation 103 (2001) 2055-2059. Go to original source...
  24. S.M. Dunlay, S.A. Weston, M.M. Redfield, et al., Tumour Necrosis Factor Alpha (TNFD) and Mortality in Heart Failure: a community study, Circulation 118 (2008) 625-631. Go to original source... Go to PubMed...
  25. S. Verma, C.H. Wang, S.H. Li, et al., A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis, Circulation 106 (2002) 913-919. Go to original source...
  26. I.S. Anand, R. Latini, V.G. Florea, et al., C-reactive protein in heart failure: prognostic value and the effect of valsartan, Circulation 112 (2005) 1428-1434. Go to original source... Go to PubMed...
  27. M. Valko, D. Leibfritz, J. Moncol, et al., Free radicals and antioxidants in normal physiological functions and human disease, The International Journal of Biochemistry and Cell Biology 39 (2007) 44-84. Go to original source... Go to PubMed...
  28. B.J. Thannickal, B.L. Fanburg, Reactive oxygen species in cell signaling, American Journal of Physiology. Lung Cellular and Molecular Physiology 279 (2000) 1005-1028. Go to original source... Go to PubMed...
  29. F.G. Spinale, Matrix metalloproteinases: regulation and dysregulation in the failing heart, Circulation Research 90 (2002) 520-530. Go to original source... Go to PubMed...
  30. D.J. Grieve, A. M. Shah, Oxidative stress in heart failure: more than just damage, European Heart Journal 24 (2003) 2161-2163. Go to original source...
  31. K.K. Griendling, D. Sorescu, M. Ushio-Fukai, NAD(P)H oxidase; role in cardiovascular biology and disease, Circulation Research 86 (2000) 494-501. Go to original source... Go to PubMed...
  32. J.K. Bendall, A.C. Cave, C. Heymes, et al., Pivotal role of gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy, Circulation 105 (2002) 293-296. Go to original source...
  33. W.H. Tang, M.L. Brennan, K. Philip, et al., Plasma myeloperoxidase levels in patients with chronic heart failure, American Journal of Cardiology 98 (2006) 796-799. Go to original source... Go to PubMed...
  34. K. Kameda, T. Matsunaga, N. Abe, et al., Correlation of oxidative stress with activity of matrix metalloproteinase in patients with coronary artery disease. Possible role for left ventricular remodelling, European Heart Journal 24 (2003) 2180-2185. Go to original source...
  35. M.M. Kittleson, M.E. St John, V. Bead, et al., Increased levels of uric acid predict haemodynamic compromise in patients with heart failure independently of B-type natriuretic peptide levels, Heart 93 (2007) 365-367. Go to original source... Go to PubMed...
  36. S.D. Anker, W. Doehner, M. Rauchhaus, et al., Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic paging, Circulation 107 (2003) 1991-1997. Go to original source... Go to PubMed...
  37. A.H. Wagner, T. Kohler, U. Ruckschloss, et al., Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation, Arteriosclerosis, Thrombosis, and Vascular Biology 20 (2000) 61-69. Go to original source... Go to PubMed...
  38. N.G. Morgenthaler, J. Struck, S. Jochberger, et al., Copeptin: clinical use of a new biomarker, Trends in Endocrinology and Metabolism 19 (2008) 43-49. Go to original source... Go to PubMed...
  39. C.L. Holmes, D.W. Landry, J.T. Granton, Science review: Vasopressin and the cardiovascular system part 1-receptor physiology, Critical Care 7 (2003) 427-434. Go to original source... Go to PubMed...
  40. G. Gimpl, F. Fahrenholz, The oxytocin receptor system: structure, function, and regulation, Physiological Reviews 81 (2001) 629-683. Go to original source... Go to PubMed...
  41. A.L. García-Villalón, J.L. Garcia, N. Fernández, et al., Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide, British Journal of Pharmacology 118 (1996) 1848-1854. Go to original source... Go to PubMed...
  42. J. Gutkowska, M. Jankowski, C. Lambert, Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart, Proceedings of the National Academy of Sciences of the United States of America 94 (1997) 11704-11709. Go to original source...
  43. T. Zenteno-Savin, I. Sada-Ovalle, G. Ceballos, et al., Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors, European Journal of Pharmacology 410 (2000) 15-23. Go to original source... Go to PubMed...
  44. Y. Xu, L. Sandirasegarane, V. Gopalakrishnan, Protein kinase C inhibitors enhance endothelin-1 and attenuate vasopressin and angiotensin II evoked [Ca2+]i elevation in the rat cardiomyocyte, British Journal of Pharmacology 108 (1993) 6-8. Go to original source... Go to PubMed...
  45. C.L. Holmes, D.W. Landry, J.T. Granton, Science review: Vasopressin and the cardiovascular system part 2-clinical physiology, Critical Care 8 (2004) 15-23. Go to original source... Go to PubMed...
  46. W.A. Boyle 3rd, L.D. Segel, Attenuation of vasopressin-mediated coronary constriction and myocardial depression in the hypoxic heart, Circulation Research 66 (1990) 710-721. Go to original source... Go to PubMed...
  47. D. Stolz, M. Christ-Crain, N.G. Morgenthaler, et al., Copeptin, C-reactive protein and procalcitonin as prognostic biomarkers in acute exacerbation of COPD, Chest 131 (2007) 1058-1067. Go to original source... Go to PubMed...
  48. M. Katan, F. Fluri, N.G. Morgenthaler, et al., Copeptin: a novel, independent prognostic marker in patients with ischemic stroke, Annals of Neurology 66 (2009) 799-808. Go to original source... Go to PubMed...
  49. P. Ostadal, A. Kruger, V. Zdrahalova, et al., Blood levels of copeptin on admission predict outcomes in out-of-hospital cardiac arrest survivors treated with therapeutic hypothermia, Critical Care 16 (2012) R187. Go to original source... Go to PubMed...
  50. K. Chatterjee, Neurohormonal activation in congestive heart failure and the role of vasopressin, The American Journal of Cardiology 95 (2005) 8B-13B. Go to original source... Go to PubMed...
  51. J. Fukuzawa, T. Haneda, K. Kikuchi, Arginine vasopressin increases the rate of protein synthesis in isolated perfused adult rat heart via the V1 receptor, Molecular and Cellular Biochemistry 195 (1999) 93-98. Go to original source...
  52. Y.H. Fan, L.Y. Zhao, Q.S. Zheng, et al., Arginine vasopressin increases iNOS-NO system activity in cardiac fibroblasts through NF-kappaB activation and its relation with myocardial fibrosis, Life Sciences 81 (2007) 327-335. Go to original source... Go to PubMed...
  53. S.R. Goldsmith, The role of vasopressin in congestive heart failure, Cleveland Clinical Journal of Medicine 73 (2006) 19-23. Go to original source...
  54. J.J. Preibisz, J.E. Sealey, J.H. Laragh, Plasma and platelet vasopressin in essential hypertension and congestive heart failure, Hypertension 5 (1983) I129-I138. Go to original source...
  55. G. Baumann, J.F. Dingman, Distribution, blood transport, and degradation of antidiuretic hormone in man, The Journal of Clinical Investigation 57 (1976) 1109-1116. Go to original source... Go to PubMed...
  56. B. Stoiser, D. Mörtl, M. Hülsmann, et al., Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure, European Journal of Clinical Investigation 36 (2006) 771-778. Go to original source... Go to PubMed...
  57. S. Neuhold, M. Huelsmann, G. Strunk, et al., Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease, Journal of the American College of Cardiology 52 (2008) 266-272. Go to original source... Go to PubMed...
  58. S.Q. Khan, O.S. Dhillon, R.J. O'Brien, C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study, Circulation 115 (2007) 2103-2010. Go to original source... Go to PubMed...
  59. D. Kelly, I.B. Squire, S.Q. Khan, et al., C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remodelling, and clinical heart failure in survivors of myocardial infarction, Journal of Cardiac Failure 14 (2008) 739-745. Go to original source... Go to PubMed...
  60. S. Masson, R. Latini, E. Carbonieri, et al., The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: data from the GISSI-heart failure (GISSI-HF) trial, European Journal of Heart Failure 12 (2010) 338-347. Go to original source... Go to PubMed...
  61. K. Kitamura, K. Kangawa, M. Kawamoto, et al., Adrenomedullin: novel hypotensive peptide isolated from human pheochromocytoma, Biochemical and Biophysical Research Communicatios 192 (1993) 553-560. Go to original source... Go to PubMed...
  62. Y. Ichiki, K. Kitamura, K. Kangawa, et al., Distribution and characterization of immunoreactive adrenomedullin in human tissue and plasma, FEBS Letters 338 (1994) 6-10. Go to original source... Go to PubMed...
  63. S. Sugo, N. Minamino, K. Kangawa, et al., Endothelial cells actively synthesize and secrete adrenomedullin, Biochemical and Biophysical Research Communications 201 (1994) 1160-1166. Go to original source... Go to PubMed...
  64. J. Roh, C.L. Chang, A. Bhalla, et al., Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes, The Journal of Biological Chemistry 279 (2004) 7264-7274. Go to original source... Go to PubMed...
  65. K. Kitamura, K. Kangawa, T. Eto, Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions, Microscopy Research and Technique 57 (2002) 3-13. Go to original source... Go to PubMed...
  66. T. Shimosawa, T. Fujita, Adrenomedullin and its related peptide, Endocrine Journal 52 (2005) 1-10. Go to original source... Go to PubMed...
  67. L.M. McLatchie, N.J. Fraser, M.J. Main, et al., RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor, Nature 393 (1998) 333-339. Go to original source... Go to PubMed...
  68. T. Ishimitsu, H. Ono, J. Minami, et al., Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders, Pharmacology and Therapeutics 111 (2006) 909-927. Go to original source... Go to PubMed...
  69. I. Szokodi, P. Kinnunen, P. Tavi, et al., Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide, Circulation 97 (1998) 1062-1070. Go to original source...
  70. N. Nagaya, T. Satoh, T. Nishikimi, et al., Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure, Circulation 101 (2000) 498-503. Go to original source...
  71. T. Ishimitsu, T. Nishikimi, Y. Saito, et al., Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure, The Journal of Clinical Investigation 94 (1994) 2158-2161. Go to original source... Go to PubMed...
  72. F. Pousset, F. Masson, O. Chavirovskaia, et al., Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure, European Heart Journal 21 (2000) 1009-1014. Go to original source...
  73. N. Nagaya, T. Nishikimi, M. Uematsu, et al., Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction, Heart 81 (1999) 483-487. Go to original source...
  74. S.Q. Khan, R.J. O'Brien, J. Struck, et al., Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study, Journal of the American College of Cardiology 49 (2007) 1525-1532. Go to original source... Go to PubMed...
  75. M. Christ-Crain, N.G. Morgenthaler, J. Struck, et al., Mid-regional pro-adrenomedullin as a prognostic marker in sepsis: an observational study, Critical Care 9 (2005) 816-824. Go to original source... Go to PubMed...
  76. M. Christ-Crain, N.G. Morgenthaler, D. Stolz, et al., Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia, Critical Care 10 (2006) R96. Go to original source... Go to PubMed...
  77. K. Meeran, D. O'Shea, P.D. Upton, Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study, The Journal of Clinical Endocrinology and Metabolism 82 (1997) 95-100. Go to original source...
  78. J. Struck, C. Tao, N.G. Morgenthaler, A. Bergmann, Identification of an Adrenomedullin precursor fragment in plasma of sepsis patients, Peptides 25 (2004) 1369-1372. Go to original source... Go to PubMed...
  79. I.T. Klip, A.A. Voors, S.D. Anker, et al., Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction, Heart 97 (2011) 892-898. Go to original source... Go to PubMed...
  80. S. von Haehling, G.S. Filippatos, J. Papassotiriou, et al., Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure, European Journal of Heart Failure 12 (2010) 484-491. Go to original source... Go to PubMed...
  81. A. Maisel, C. Mueller, R. Nowak, et al., Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial, Journal of the American College of Cardiology 55 (2010) 2062-2076. Go to original source... Go to PubMed...
  82. R.V. Shah, Q.A. Truong, H.K. Gaggin, et al., Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea, European Heart Journal 33 (17) (2012) 2197-2205. Go to original source... Go to PubMed...
  83. E.O. Weinberg, M. Shimpo, G.W. De Keulenaer, et al., Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction, Circulation 106 (2002) 2961-2966. Go to original source...
  84. H. Iwahana, K. Yanagisawa, A. Ito-Kosaka, et al., Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells, European Journal of Biochemistry 264 (1999) 397-406. Go to original source...
  85. S. Sanada, D. Hakuno, L. Higgins, et al., IL-33 and ST2 comprise critical biomechanically induced and cardioprotective signalling system, The Journal of Clinical Investigation 117 (2007) 1538-1549. Go to original source... Go to PubMed...
  86. D. Xu, W.L. Chan, B.P. Leung, et al., Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells, The Journal of Experimental Medicine 187 (1998) 787-794. Go to original source... Go to PubMed...
  87. J. Schmitz, A. Owyang, E. Oldham, et al., IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type-2 associated cytokines, Immunity 23 (2005) 479-490. Go to original source... Go to PubMed...
  88. S. Seki, S. Sanada, A. Y. Kudinova, et al., Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling, Circulation. Heart Failure 2 (2009) 684-691. Go to original source... Go to PubMed...
  89. E.E. Coglianese, M.G. Larson, R. S. Vasan, et al., Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study, Clinical Chemistry 58 (2012) 1673-1681. Go to original source... Go to PubMed...
  90. J.P. Januzzi, W.F. Peacock, A.S. Maisel, et al., Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE, Journal of the American College of Cardiology 50 (2007) 607-613. Go to original source... Go to PubMed...
  91. S.U. Rehman, T. Mueller, J.L. Januzzi Jr., Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure, Journal of the American College of Cardiology 52 (2008) 1458-1465. Go to original source... Go to PubMed...
  92. R.V. Shah, A.A. Chen-Tournoux, M.H. Picard, et al., Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea, Circulation. Heart Failure 2 (2009) 311-319. Go to original source... Go to PubMed...
  93. R.Y. Yang, G.A. Rabinovich, F.T. Liu, Galectins: structure, function and therapeutic potential, Expert Reviews in Molecular Medicine 10 (2008) E17. Go to original source... Go to PubMed...
  94. E.A. Barboni, S. Bawumia, K. Henrick, et al., Molecular modelling and mutagenesis studies of the N-terminal domains of galectin-3: evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding, Glycobiology 10 (2000) 1201-1208. Go to original source... Go to PubMed...
  95. R.A. de Boer, L. Yu, D. J. van Veldhuisen, Galectin-3 in cardiac remodelling and heart failure, Current Heart Failure Reports 7 (2010) 1-8. Go to original source... Go to PubMed...
  96. F.T. Liu, G.A. Rabinovich, Galectins as modulators of tumour progression, Nature Reviews. Cancer 5 (2005) 29-41. Go to original source... Go to PubMed...
  97. H. Sano, D.K. Hsu, J.R. Apgar, et al., Critical role of galectin-3 in phagocytosis by macrophages, The Journal of Clinical Investigation 112 (2003) 389-397. Go to original source... Go to PubMed...
  98. M.T. Elola, C. Wolfenstein-Todel, M.F. Troncoso, et al., Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival, Cellular and Molecular Life Sciences 64 (2007) 1679-1700. Go to original source... Go to PubMed...
  99. R.C. Hughes, Secretion of the galectin family of mammalian carbohydrate-binding family proteins, Biochimica et Biophysica Acta 1473 (1999) 172-185. Go to original source...
  100. H. Kim, J. Lee, J.W. Hyun, et al., Expression and immunohistochemical localization of galectin-3 in various mouse tissues, Cell Biology International 31 (2007) 655-662. Go to original source... Go to PubMed...
  101. S.L. Friedman, Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury, The Journal of Biological Chemistry 275 (2000) 2247-2250. Go to original source... Go to PubMed...
  102. R.D. Brown, S.K. Ambler, M.D. Mitchell, et al., The cardiac fibroblast: therapeutic target in myocardial remodelling and failure, Annual Review of Pharmacology and Toxicology 45 (2005) 657-687. Go to original source... Go to PubMed...
  103. N.C. Henderson, A.C. Mackinnon, S.L. Farnworth, et al., Galectin-3 regulates myofibroblast activation and hepatic fibrosis, Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 5060-5065. Go to original source... Go to PubMed...
  104. Y. Nishi, H. Sano, T. Kawashima, et al., Role of galectin-3 in human pulmonary fibrosis, Allergology International 56 (2007) 57-65. Go to original source... Go to PubMed...
  105. L. Wang, H. Friess, Z. Zhu, et al., Galectin-1 and galectin-3 in chronic pancreatitis, Laboratory Investigation 80 (2000) 1233-1241. Go to original source... Go to PubMed...
  106. U.C. Sharma, S. Pokharel, T.J. van Brakel, et al., Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction, Circulation 110 (2004) 3121-3128. Go to original source... Go to PubMed...
  107. R.A. de Boer, A.A. Voors, P. Muntendam, et al., Galectin-3: a novel mediator of heart failure development and progression, European Journal of Heart Failure 11 (2009) 811-817. Go to original source... Go to PubMed...
  108. J. E. Ho, Ch. Liu, A. Lyass, et al., Marker of cardiac fibrosis, predicts incident heart failure in the community, Journal of the American College of Cardiology 60 (2012) 1249-1256 Go to original source... Go to PubMed...
  109. D. Lok, P. van der Meer, P.B. de La Porte, et al., Galectin-3, a novel marker of macrophage activity, predicts outcome in patients with stable chronic heart failure, Journal of the American College of Cardiology 49 (2007) 98A.
  110. R.R. van Kimmenade, J.L. Januzzi Jr, P.T. Ellinor, et al., Utility of aminoterminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure, Journal of the American College of Cardiology 48 (2006) 1217-1224. Go to original source... Go to PubMed...
  111. H. Milting, P. Ellinghaus, M. Seewald, et al., Plasma biomarkers of myocardial fibrosis and remodelling in terminal heart failure patients supported by mechanical circulatory support device, Journal of Heart and Lung Transplantation 27 (2008) 589-596. Go to original source... Go to PubMed...
  112. R.A. de Boer, D.J. Lok, T. Jaarsma, et al., Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction, Annals of Medicine 43 (2011) 60-68. Go to original source... Go to PubMed...




Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.