Cor Vasa 2009, 51(10):691-697 | DOI: 10.33678/cor.2009.171
Development of myocardial tolerance to oxygen deficiency - experimental aspects
- Centrum výzkumu chorob srdce a cév
- 1 Fyziologický ústav AV ČR
- 2 Institut klinické a experimentální medicíny, Praha, Česká republika
The current interest in the hypoxic immature myocardium is due primarily to clinical need as hypoxic congenital heart disease continues to be the leading single cause of death from congenital heart disease and coronary disease is no longer a disease of the fifth and higher decades but its risk factors start appearing already in the early stages of ontogenic development. Moreover, the number of patients undergoing successful surgery for cyanotic congenital heart disease in the early stage of ontogenic development in our adult population continues to grow. These individuals are nearing an age whereby the risk of serious cardiovascular disease, and coronary heart disease in particular, increases. Experimental studies show that the immature heart is more tolerant to acute oxygen deficiency than the adult heart. While the reasons underlying this difference are unclear yet, it is most likely that contributing factors include developmental changes of energy metabolism including mitochondrial function. The high tolerance of the neonatal heart cannot be further enhanced by ischemic preconditioning or adaptation to chronic hypoxia; endogenous protective mechanisms do not set in until tolerance starts to decline in the course of development. Tolerance of the adult myocardium to acute oxygen deficiency may be significantly affected by perinatal hypoxia. The above results show that the developmental approach offers new possibilities in the study of the pathogenesis, prevention and treatment of serious cardiovascular disease.
Keywords: Ontogenetic development; Tolerance to hypoxia, ischemia; Myocardial protection; Myocardial mitochondria
Published: October 1, 2009 Show citation
References
- Rakuąan K. Vascularization of the heart during normal and pathological growth. Adv Org Biol 1999;7:130-53.
Go to original source...
- Oą»ádalová I, Oą»ádal B, Kolář F. Effect of prenatal hypoxia on contractile performance and responsiveness to Ca2+ in the isolated perinatal rat heart. Physiol Res 1995;44:135-7.
- Fejfar Z. Prevention against ischaemic heart disease: A critical review. In: Oliver MF, ed. Modern trends in cardiology-3. London and Boston: Butterworths, 1975:465-99.
- ©amánek M, Urbanová Z. Prevence aterosklerózy v dětském věku. Praha: Galén, 2003:226.
- Fazekas JF, Aleander FAD, Himwich HE. Tolerance of the newborn to anoxia. Am J Physiol 1941;134:281-5.
Go to original source...
- Trojan S. Adaptation of the central nervous system to oxygen defficiency during ontogenesis. Acta Univ Carol Med Monograph 1978;85:5.
- Su JY, Friedman WF. Comparison of the responses of fetal and adult cardiac muscle to hypoxia. Am J Physiol 1973;224:1249-53.
Go to original source...
Go to PubMed...
- Jarmakani JM, Nagamoto T, Nakazawa M, Langer GA. Effect of hypoxia on mechanical function in the neonatal mammalian heart. Am J Physiol 1978;235:H469-74.
Go to original source...
Go to PubMed...
- Jarmakani JM, Nagamoto T, Nakazawa M, Langer GA. Effect of hypoxia on myocardial high-energy phosphates in the neonatal mammalian heart. Am J Physiol 1978b;235:H475-81.
Go to original source...
Go to PubMed...
- Jarmakani JM, Nakanishi T, George BL, Bers D. Effect of extracellular calcium on myocardial mechanical function in the neonatal rabbit. Dev Pharmacol Ther 1982;5:1-13.
Go to original source...
- Oą»ádal B, Procházka J, Janatová T, et al. Developmental aspects of cardiac resistance to hypoxia. Ber Humboldt Univ Berlin 1982;24:52-8.
- Baker JE, Boerboom LE, Olinger GN. Age-related changes in the ability of hypothermia and cardioplegia to protect ischemic rabbit myocardium. J Thorac Cardiovasc Surg 1988;96:717-24.
Go to original source...
- Baker JE, Boerboom LE, Olinger GN. Is protection of ischemic neonatal myocardium by cardioplegia species dependent. J Thorac Cardiovasc Surg 1990;99:280-7.
Go to original source...
- Julia P, Korfsky ER, Buckberg GD, et al. Studies of myocardial protection in the immature heart. I. Enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences. J Thorac Cardiovasc Surg 1990a;100:879-87.
Go to original source...
- Riva A, Hearse DJ. Age-dependent changes in myocardial susceptibility to ischemic injury. Cardioscience 1993;4:85-92.
Go to PubMed...
- Oą»ádalová I, Oą»ádal B, Kolář F, et al. Tolerance to ischemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 1998;30:857-65.
Go to original source...
Go to PubMed...
- Baker EJ, Boerboom LE, Olinger GN, Baker JE. Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Physiol 1995;268: H1165-73.
Go to original source...
Go to PubMed...
- Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature 2004;432:1032-6.
Go to original source...
Go to PubMed...
- Mühlfeld C, Singer D, Engelhardt N, et al. Electron microscopy and microcalorimetry of the postnatal rat heart (Rattus norvegicus). Comp Biochem Physiol A Mol Integr Physiol 2005;141:310-8.
Go to original source...
Go to PubMed...
- Rohlicek CV, Viau S, Trieu P, Hébert TE. Effects of neonatal hypoxia in the rat on inotropic stimulation of the adult heart. Cardiovasc Res 2005;65: 861-8.
Go to original source...
Go to PubMed...
- Oą»ádal B, Oą»ádalová I, Dhalla NS. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 1999;79:635-59.
Go to original source...
Go to PubMed...
- Hoerter J. Changes in the sensitivity to hypoxia and glucose deprivation in the isolated perfused rabbit heart during perinatal development. Pflugers Arch 1976;363:1-6.
Go to original source...
Go to PubMed...
- Julia P, Young PP, Buckberg GD, et al. Studies of myocardial protection in the immature heart. II. Evidence for importance of amino acid metabolism in tolerance to ischemia. J Thorac Cardiovasc Res 1990;100:888-95.
Go to original source...
- Hohl CM. Effect of respiratory inhibition and ischemia on nucleotide metabolism in newborn swine cardiac myocytes. In: Oą»ádal B, Nagano M, Takeda N, Dhalla NS, eds. The developing heart. Philadelphia, PA: Lippincott, 1997:393-406.
- Nijjar MS, Dhalla NS, Biochemical basis of calcium handling in developing myocardium. In: Oą»ádal B, Nagano M, Takeda N, Dhalla NS, eds. The developing heart. Philadelphia, PA: Lippincott, 1997:189-217.
- Fabiato A. Calcium-induced release of calcium from the sarcoplasmic reticulum. Am J Physiol 1983;245:C1-14.
Go to original source...
Go to PubMed...
- Vetter R, Studer R, Reinecke H, et al. Reciprocal changes in the postnatal expression of the sarcolemmal Na+-Ca2+-exchanger and SERCA2 in rat heart. J Mol Cell Cardiol 1995;27:1689-701.
Go to original source...
- Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ Res 1991;68:662-73.
Go to original source...
- Wibo M, Kolář F, Zheng L, Godfraind T. Influence of thyroid status on postnatal maturation of calcium channels, β-adrenoceptors and cation transport ATPases in rat ventricular tissue. J Mol Cell Cardiol 1995;27: 1731-43.
Go to original source...
- Tanaka H, Shigenobu K. Effect of ryanodine on neonatal and adult rat heart: developmental increase in sarcoplasmic reticulum function. J Mol Cell Cardiol 1989;21:1305-13.
Go to original source...
- Vornanen M. Postnatal changes in cardiac calcium regulation. In: Oą»ádal B, Nagano M, Takeda N, Dhalla NS, eds. The developing heart. Philadelphia, PA: Lippincott, 1997:219-29.
- Oą»ádalová I, Oą»ádal B. Ontogenetic differences in isoproterenol-induced 85Sr uptake in the myocardium. In: Nagano M, Takeda N, Dhalla ND, eds. The cardiomyopathic heart. New York: Raven Press, 1994:395-400.
- Boucek RJ, Shelton M, Artman M, et al. Comparative effect of verapamil, nifedipine and diltiazem on contractile function in the isolated immature and adult rabbit heart. Pediatr Res 1984;18:948-54.
Go to original source...
- ©kovránek J, Oą»ádal B, Pelouch V, Procházka J. Ontogenetic differences in cardiac sensitivity to verapamil in rats. Pediatr Cardiol 1986;7:25-9.
Go to original source...
Go to PubMed...
- Kolář F, Oą»ádal B, Papouąek F. Effect of verapamil on contractile function of the isolated perfused heart. Basic Res Cardiol 1990;85:429-34.
Go to original source...
Go to PubMed...
- Artman M, Mahony L, Teitel DF. Neonatal cardiology. New York: The McGraw Hill, 2002:272.
- Solaro RJ, Lee JA, Kentish JC, Allen DG. Effect of acidosis on ventricular muscle from adult and neonatal rats. Circ Res 1988;63:779-87.
Go to original source...
- Lopaschuk GD. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Presse Med 1998;27:2100-4.
Go to original source...
- Legato MJ. Cellular mechanisms of normal growth in the mammalian heart. II. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ Res 1979;44:263-79.
Go to original source...
Go to PubMed...
- Olivetti G, Anversa P, Loud AV. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth and sarcoplasmic alterations. Circ Res 1980;46:503-12.
Go to original source...
- Bass A, Stejskalová M, Stieglerová A, et al. Ontogenetic development of energy-supplying enzymes in rat and guinea-pig heart. Physiol Res 2001; 50:237-45.
Go to original source...
- Schonfeld P, Schild L, Bohnensack R. Expression of the ADP/ATP carrier and expansion of the mitochondrial (ATP+ADP) pool contribute to postnatal maturation of the rat heart. Eur J Biochem 1996;241:895-900.
Go to original source...
- Drahota Z, Milerová M, Stieglerová A, et al. Developmental changes of cytochrome c oxidase and citrate synthase in rat heart homogenate. Physiol Res 2004;53:119-22.
Go to original source...
- ©kárka L, Bardová K, Brauner, et al. Expression of mitochondrial uncoupling protein 3 and adenine nucleotide translocase 1 genes in developing rat heart: putative involvement in control of mitochondrial membrane potential. J Mol Cell Cardiol 2003;35:321-30.
Go to original source...
- Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection. Cardiovasc Res 2004;61:372-85.
Go to original source...
Go to PubMed...
- Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 2006;66: 222-32.
Go to original source...
- Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 2002;277:34793-99.
Go to original source...
Go to PubMed...
- Milerová M, Charvátová Z, ©kárka L, et al. Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 2009;v tisku.
Go to original source...
- Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005;434:658-62.
Go to original source...
Go to PubMed...
- Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005;434:652-8.
Go to original source...
Go to PubMed...
- Balaska D, Halestrap AP, Suleiman M-S, Griffiths EJ. Increased susceptibility to pore-opening in heart mitochondria from neonatal compared with adult rats (Abstract). J Mol Cell Cardiol 2005;38:1002.
- Oą»ádal B, Kolář F. Cardiac adaptation to chronic high altitude hypoxia. Respir Physiol Neurobiol 2007;158:224-36.
Go to original source...
Go to PubMed...
- Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 2003;83:1113-51.
Go to original source...
Go to PubMed...
- Bolli R. Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 2007;292:H19-27.
Go to original source...
Go to PubMed...
- Vinten-Johansen J. Postconditioning: a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion Heart Fail Rev 2007;12:235-44.
Go to original source...
Go to PubMed...
- Laskey WK. Brief repetitive baloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction; a pilot study. Catether Cardiovasc Interv 2005;65:361-7.
Go to original source...
Go to PubMed...
- Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36.
Go to original source...
Go to PubMed...
- Awad WI, Shattock MJ, Chambers DJ. Ischemic preconditioning in immature myocardium. Circulation 1998;98:206-13.
- Yellon DM, Baxter GF, Garcia-Dorado D, Sumeray MS. Ischaemic preconditioning: present position and future directions. Cardiovasc Res 1998;37:21-33.
Go to original source...
Go to PubMed...
- Garlid KD, Dos Santos P, Xie ZJ, et al. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection. Biochim Biophys Acta 2003;1606:1-21.
Go to original source...
Go to PubMed...
- Baker JE, Holman P, Gross GJ. Preconditioning in immature rabbit hearts. Role of KATP channels. Circulation 1999;99:1249-54.
Go to original source...
Go to PubMed...
- Oą»ádalová I, Oą»ádal B, Jarkovská D, Kolář F. Ischemic preconditioning in chronically hypoxic neonatal rat heart. Pediatr Res 2002;52:561-7.
Go to original source...
- Hurtado A. Some clinical aspects of life at high altitudes. Ann Intern Med 1960;53:247-58.
Go to original source...
Go to PubMed...
- Oą»ádal B, Kolář F, Pelouch V, Widimský J. Ontogenetic differences in cardiopulmonary adaptation to chronic hypoxia. Physiol Res 1995;44:45-51.
- Kolář F, Oą»ádal B, Procházka J, et al. Comparison of cardiopulmonary response to intermittent high-altitude hypoxia in young and adult rats. Respiration 1989;5:57-62.
Go to original source...
- Kolář F, Oą»ádal B. Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res 2004;53 (Suppl 1):S3-13.
Go to original source...
- ©amánek M, Bass A, Oą»ádal B, et al. Effect of hypoxaemia on enzymes supplying myocardial energy in children with congenital heart disease. Int J Cardiol 1989;25:265-70.
Go to original source...
Go to PubMed...
- Ferreiro CR, Chagas AC, Carvalho MH, et al. Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptative mechanism. Circulation 2001;103:2272-6.
Go to original source...
Go to PubMed...
- Rafiee P, Shi Y, Kong X, et al. Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection. Circulation 2002;106:239-45.
Go to original source...
Go to PubMed...
- Li G, Xiao Y, Estrella JL, et al. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult heart. J Soc Gynecol Investig 2003;10:265-74.
Go to original source...
Go to PubMed...
- Xu Y, Williams SJ, O'Brien D, Davidge ST. Hypoxia or nutrient restriction during pregnancy in rats leads to progressive cardiac remodeling and impairs postischemic recovery in adult male offspring. FASEB J 2006;20:1251-3.
Go to original source...
Go to PubMed...
- Netuka I, Szarszoi O, Malý J, et al. Effect of perinatal hypoxia on cardiac tolerance to acute ischaemia in adult male and female rats. Clin Exp Pharmacol Physiol 2006;33:714-9.
Go to original source...
Go to PubMed...
- Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, et al. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 2001;81: 1461-97.
Go to original source...
Go to PubMed...
- Oą»ádal B, Netuka I, Malý J, et al. Gender differences in cardiac ischemic injury and protection-experimental aspects. Exp Biol Med 2009;234:1011-19.
Go to original source...
Go to PubMed...