Cor Vasa 2022, 64(Suppl. 4):7-17

The year in cardiovascular medicine 2021: digital health and innovation

Panos E. Vardas1, 2*, Folkert W. Asselbergs3, 4, Maarten van Smeden5, Paul Friedman6
1 Heart Sector, Hygeia Hospitals Group, HHG, 5, Erithrou Stavrou, Marousi, Athens 15123, Greece
2 European Heart Agency, ESC, Brussels, Belgium
3 Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
4 Health Data Research UK and Institute of Health Informatics, University College London, London, UK
5 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
6 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA

Received Date: 13 October 2021; Revision received Date: 15 November 2021; Accepted Date: 23 November 2021
Reproduced from: Vardas PE, Asselbergs FW, van Smeden M, Friedman P. The year in cardiovascular medicine 2021: digital health and innovation. Eur Heart J 2022;43:271–279. https://doi.org/10.1093/eurheartj/ehab874, by permission of Oxford University Press on behalf of the European Society of Cardiology

This article presents some of the most important developments in the fi eld of digital medicine that have appeared over the last 12 months and are related to cardiovascular medicine. The article consists of three main sections, as follows: (i) artifi cial intelligence-enabled cardiovascular diagnostic tools, techniques, and methodologies, (ii) big data and prognostic models for cardiovascular risk protection, and (iii) wearable devices in cardiovascular risk assessment, cardiovascular disease prevention, diagnosis, and management. To conclude the article, the authors present a brief further prospective on this new domain, highlighting existing gaps that are specifi cally related to artifi cial intelligence technologies, such as explainability, cost-effectiveness, and, of course, the importance of proper regulatory oversight for each clinical implementation.

Keywords: AI-ECG; AI-wearables; Digital health; Cardiovascular medicine; Big data; Machine learning

Received: December 21, 2022; Accepted: December 21, 2022; Published: December 30, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vardas PE, Asselbergs FW, van Smeden M, Friedman P. The year in cardiovascular medicine 2021: digital health and innovation. Cor Vasa. 2022;64(Suppl. 4):7-17.
Download citation

References

  1. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 2019;25:65-69. Go to original source... Go to PubMed...
  2. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med 2019;381:1909-1917. Go to original source... Go to PubMed...
  3. Guo Y, Wang H, Zhang H, Liu T, Liang Z, Xia Y, et al. Mobile photoplethysmographic technology to detect atrial fibrillation. J Am Coll Cardiol 2019;74:2365-2375. Go to original source... Go to PubMed...
  4. Kashou AH, Ko W-Y, Attia ZI, Cohen MS, Friedman PA, Noseworthy PA. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program. Cardiovasc Digit Health J 2020;1:62-70. Go to original source... Go to PubMed...
  5. Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL, et al. Artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ Arrhythmia Electrophysiol 2020;13:e008437. Go to original source... Go to PubMed...
  6. Adedinsewo DA, Johnson PW, Douglass EJ, Attia IZ, Phillips SD, Goswami RM, et al. Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model. Eur Heart J - Digit Health 2021: ztab078. Go to original source... Go to PubMed...
  7. Grogan M, Lopez-Jimenez F, Cohen-Shelly M, Dispenzieri A, Attia ZI, Abou Ezzedine OF, et al. Artificial intelligence-enhanced electrocardiogram for the early detection of cardiac amyloidosis. Mayo Clin Proc 2021;96:2768-2778. Go to original source... Go to PubMed...
  8. Kwon J-M, Kim K-H, Medina-Inojosa J, Jeon K-H, Park J, Oh B-H. Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. J Heart Lung Transplant 2020;39:805-814. Go to original source... Go to PubMed...
  9. Kwon J-M, Jung M-S, Kim K-H, Jo Y-Y, Shin J-H, Cho Y-H, et al. Artificial intelligence for detecting electrolyte imbalance using electrocardiography. Ann Noninvasive Electrocardiol 2021;26:e12839. Go to original source... Go to PubMed...
  10. Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol 2019;4:428-436. Go to original source... Go to PubMed...
  11. Kwon J-M, Lee SY, Jeon K-H, Lee Y, Kim K-H, Park J, et al. Deep learning-based algorithm for detecting aortic stenosis using electrocardiography. J Am Heart Assoc 2020;9:e014717. Go to original source... Go to PubMed...
  12. Cohen-Shelly M, Attia ZI, Friedman PA, Ito S, Essayagh BA, Ko W-Y, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J 2021;42:2885-2896. Go to original source... Go to PubMed...
  13. Kwon J-M, Kim K-H, Akkus Z, Jeon K-H, Park J, Oh B-H, et al. Artificial intelligence for detecting mitral regurgitation using electrocardiography. J Electrocardiol 2020;59:151-157. Go to original source... Go to PubMed...
  14. Attia ZI, Kapa S, Noseworthy PA, Lopez-Jimenez F, Friedman PA. Artificial intelligence ECG to detect left ventricular dysfunction in COVID-19: a case series. Mayo Clin Proc 2020;95:2464-2466. Go to original source... Go to PubMed...
  15. Kwon J-M, Jeon K-H, Kim HM, Kim MJ, Lim SM, Kim K-H, et al. Comparing the performance of artificial intelligence and conventional diagnosis criteria for detecting left ventricular hypertrophy using electrocardiography. Europace 2020;22:412-419. Go to original source... Go to PubMed...
  16. Cho Y, Kwon J-M, Kim K-H, Medina-Inojosa JR, Jeon K-H, Cho S, et al. Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Sci Rep 2020;10:20495. Go to original source... Go to PubMed...
  17. Makimoto H, Höckmann M, Lin T, Glöckner D, Gerguri S, Clasen L, et al. Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction. Sci Rep 2020;10:8445. Go to original source... Go to PubMed...
  18. Yao X, Rushlow DR, Inselman JW, McCoy RG, Thacher TD, Behnken EM, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med 2021;27:815-819. Go to original source... Go to PubMed...
  19. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 2019;25:70-74. Go to original source... Go to PubMed...
  20. Antoniades C, Oikonomou EK. Artificial intelligence in cardiovascular imaging-principles, expectations, and limitations. Eur Heart J 2021:ehab678. Go to original source... Go to PubMed...
  21. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693-704. Go to original source... Go to PubMed...
  22. Shamout FE, Shen Y, Wu N, Kaku A, Park J, Makino T, et al. An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department. npj Digit Med 2021;4:80. Go to original source... Go to PubMed...
  23. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng 2021;14:4-15. Go to original source... Go to PubMed...
  24. Eng D, Chute C, Khandwala N, Rajpurkar P, Long J, Shleifer S, et al. Automated coronary calcium scoring using deep learning with multicenter external validation. npj Digit Med 2021;4:88. Go to original source... Go to PubMed...
  25. Zeleznik R, Foldyna B, Eslami P, Weiss J, Alexander I, Taron J, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nat Commun 2021;12:715. Go to original source... Go to PubMed...
  26. Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit Health 2020;2:e486-e488. Go to original source... Go to PubMed...
  27. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018;392:2388-2396. Go to original source... Go to PubMed...
  28. Seidelmann SB, Claggett B, Bravo PE, Gupta A, Farhad H, Klein BE, et al. Retinal vessel calibers in predicting long-term cardiovascular outcomes: the atherosclerosis risk in communities study. Circulation 2016;134:1328-1338. Go to original source... Go to PubMed...
  29. Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster DR, et al. Detection of anaemia from retinal fundus images via deep learning. Nat Biomed Eng 2020;4:18-27. Go to original source... Go to PubMed...
  30. Rim TH, Lee G, Kim Y, Tham Y-C, Lee CJ, Baik SJ, et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digit Health 2020;2:e526-e536. Go to original source... Go to PubMed...
  31. Rim TH, Lee CJ, Tham Y-C, Cheung N, Yu M, Lee G, et al. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs. Lancet Digit Health 2021;3:e306-e316. Go to original source... Go to PubMed...
  32. Tran T, Huang NT, Montezuma SR. Smartphone funduscopy - How to use smartphone to take fundus photographs. https://eyewiki.aao.org/Smartphone_Funduscopy_-_How_to_Use_Smartphone_to_Take_Fundus_Photographs (2 March 2018, date last accessed).
  33. Bora A, Balasubramanian S, Babenko B, Virmani S, Venugopalan S, Mitani A, et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health 2021;3:e10-e19. Go to original source... Go to PubMed...
  34. Canton G, Hippe DS, Chen L, Waterton JC, Liu W, Watase H, et al. Atherosclerotic burden and remodeling patterns of the popliteal artery as detected in the magnetic resonance imaging osteoarthritis initiative data set. J Am Heart Assoc 2021;10:e18408. Go to original source... Go to PubMed...
  35. Augusto JB, Davies RH, Bhuva AN, Knott KD, Seraphim A, Alfarih M, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance. Lancet Digit Health 2021;3:e20-e28. Go to original source... Go to PubMed...
  36. Peyster EG, Arabyarmohammadi S, Janowczyk A, Azarianpour-Esfahani S, Sekulic M, Cassol C, et al. An automated computational image analysis pipeline for histological grading of cardiac allograft rejection. Eur Heart J 2021;42:2356-2369. Go to original source... Go to PubMed...
  37. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy. Circulation 2018;138:1623-1635. Go to original source... Go to PubMed...
  38. Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. npj Digit Med 2018;1:59. Go to original source... Go to PubMed...
  39. Goto S, Mahara K, Beussink-Nelson L, Ikura H, Katsumata Y, Endo J, et al. Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. Nat Commun 2021;12:2726. Go to original source... Go to PubMed...
  40. Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al. Deep learning interpretation of echocardiograms. npj Digit Med 2020;3:10. Go to original source... Go to PubMed...
  41. Narang A, Bae R, Hong H, Thomas Y, Surette S, Cadieu C, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol 2021;6:624-632. Go to original source... Go to PubMed...
  42. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020;369:m1328. Go to original source... Go to PubMed...
  43. van Smeden M, Reitsma JB, Riley RD, Collins GS, Moons KGM. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol 2021;132:142-145. Go to original source... Go to PubMed...
  44. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 2019;110:12-22. Go to original source... Go to PubMed...
  45. Khera R, Haimovich J, Hurley NC, McNamara R, Spertus JA, Desai N, et al. Use of machine learning models to predict death after acute myocardial infarction. JAMA Cardiol 2021;6:633-641. Go to original source... Go to PubMed...
  46. D'Ascenzo F, De Filippo O, Gallone G, Mittone G, Deriu MA, Iannaccone M, et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets. Lancet 2021;397:199-207. Go to original source... Go to PubMed...
  47. Hyland SL, Faltys M, Hüser M, Lyu X, Gumbsch T, Esteban C, et al. Early prediction of circulatory failure in the intensive care unit using machine learning. Nat Med 2020;26:364-373. Go to original source... Go to PubMed...
  48. Wilken M, Hüske-Kraus D, Klausen A, Koch C, Schlauch W, Röhrig R. Alarm fatigue: causes and effects. Stud Health Technol Inform 2017;243:107-111. Go to original source... Go to PubMed...
  49. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. JAMA 2020;323:1052-1060. Go to original source... Go to PubMed...
  50. Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology 2018;129:663-674. Go to original source... Go to PubMed...
  51. Akyea RK, Qureshi N, Kai J, Weng SF. Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care. npj Digit Med 2020;3:142. Go to original source... Go to PubMed...
  52. Nanjo A, Evans H, Direk K, Hayward AC, Story A, Banerjee A. Prevalence, incidence, and outcomes across cardiovascular diseases in homeless individuals using national linked electronic health records. Eur Heart J 2020;41:4011-4020. Go to original source... Go to PubMed...
  53. Mhasawade V, Zhao Y, Chunara R. Machine learning and algorithmic fairness in public and population health. Nat Mach Intell 2021;3:659-666. Go to original source...
  54. Ward A, Sarraju A, Chung S, Li J, Harrington R, Heidenreich P, et al. Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population. npj Digit Med 2020;3:125. Go to original source... Go to PubMed...
  55. Khurshid S, Weng L-C, Al-Alusi MA, Halford JL, Haimovich JS, Benjamin EJ, et al. Accelerometer-derived physical activity and risk of atrial fibrillation. Eur Heart J 2021;42:2472-2483. Go to original source... Go to PubMed...
  56. Bonnesen MP, Frodi DM, Haugan KJ, Kronborg C, Graff C, Højberg S, et al. Day-to-day measurement of physical activity and risk of atrial fibrillation. Eur Heart J 2021;42:3979-3988. Go to original source... Go to PubMed...
  57. Bonnesen MP, Diederichsen SZ, Isaksen JL, Frederiksen KS, Hasselbalch SG, Haugan KJ, et al. Atrial fibrillation burden and cognitive decline in elderly patients undergoing continuous monitoring. Am Heart J 2021;242:15-23. Go to original source... Go to PubMed...
  58. Stehlik J, Schmalfuss C, Bozkurt B, Nativi-Nicolau J, Wohlfahrt P, Wegerich S, et al. Continuous wearable monitoring analytics predict heart failure hospitalization: the LINK-HF multicenter study. Circ Heart Fail 2020;13:e006513. Go to original source... Go to PubMed...
  59. Allen LA, Venechuk G, McIlvennan CK, Page RL, Knoepke CE, Helmkamp LJ, et al. An electronically delivered patient-activation tool for intensification of medications for chronic heart failure with reduced ejection fraction: the EPIC-HF trial. Circulation 2021;143:427-437. Go to original source... Go to PubMed...
  60. Muhlestein JB, Anderson JL, Bethea CF, Severance HW, Mentz RJ, Barsness GW, et al. Feasibility of combining serial smartphone single-lead electrocardiograms for the diagnosis of ST-elevation myocardial infarction: smartphone ECG for STEMI Diagnosis. Am Heart J 2020;221:125-135. Go to original source... Go to PubMed...
  61. Spaccarotella CAM, Polimeni A, Migliarino S, Principe E, Curcio A, Mongiardo A, et al. Multichannel electrocardiograms obtained by a smartwatch for the diagnosis of ST-segment changes. JAMA Cardiol 2020;5:1176-1180. Go to original source... Go to PubMed...




Cor et Vasa

You are accessing a site intended for medical professionals, not the lay public. The site may also contain information that is intended only for persons authorized to prescribe and dispense medicinal products for human use.

I therefore confirm that I am a healthcare professional under Act 40/1995 Coll. as amended by later regulations and that I have read the definition of a healthcare professional.